Extended geometric process and its applications to reliability

Laurent Bordes & Sophie Mercier

Université de Pau et des Pays de l'Adour

AMMSI 2014 - Toulouse

Recurrent event times data

Aircraft data

n = 29 successive failure times (operating hours) of an air-conditioning equipment of a Boeing 720 aircraft (Proschan, 1963). Data are available in Lindsey (2004). Are the inter-arrival times stochastically decreasing or increasing?

Notations and some models

- *T_i* time of the *i*-th failure/repair and *X_i* = *T_i* − *T_{i-1}* is the *i*-th inter-arrival time (*i* ≥ 1);
- Modeling the distribution of the counting process t → N(t): Non Homogeneous Poisson Process (ABAO), Renewal Process (AGAN) and many other *in between* situations (BP, Virtual Age, etc.).
 Aim: discuss the Geometric Process approach.

Extended Geometric Process

- 2 Semiparametric estimation
- 3 Aircraft data example
- 4 Applications to reliability

Semiparametric estimation

- 3 Aircraft data example
- 4 Applications to reliability

Geometric Process (GP) and its generalization

Lam (1988) introduced generalized the Renewal Process (RP). $\mathbf{Y} = (Y_n)_{n \ge 1}$ is a RP and a > 0 a real number. We set:

$$X_n = a^{n-1} Y_n \quad \text{for} \quad n \ge 1,$$

and call $X = (X_n)_{n\geq 1}$ a Geometric Process. Then the distribution of X (or $N = (N(t))_{t\geq 0}$) depends on (a, F) where F is the unknown cdf of the underlying RP $Y = (Y_n)_{n\geq 1}$ (it is the cdf of X_1). Without a parametric assumption on F the GP is a semiparametric model.

Generalized GP: We consider here that the link function between X_n and Y_n is not necessarily geometric, we assume that there exists a sequence $(b_n)_{n\geq 1}$ such that $X_n = a^{b_n}Y_n$ for $n \geq 1$. We mainly assume that $(b_n)_{n\geq 1}$ is known but we discuss the case where $b_n = g(n; \theta)$ where θ is an additional euclidean parameter.

Laurent Bordes

- 3 Aircraft data example
- 4 Applications to reliability

Semiparametric estimation method

Assume that the first *n* failure times are observed. Following Lam (1992), setting $Z_k = \log X_k = b_k \beta + \mu + \varepsilon_k$ for k = 1, ..., n where

$$\beta = \log a, \quad \mu = \mathbb{E}[\log Y_k] \quad \text{and} \quad \varepsilon_k = \log Y_k - \mu$$

the unknown parameter β is estimated by solving

$$(\hat{\mu}_n, \hat{\beta}_n) = \arg\min_{\mu, \beta} \sum_{k=1}^n (Z_k - \beta b_k + \mu)^2.$$

Finally we have $\hat{a}_n = \exp(\hat{\beta}_n)$. The cdf F is naturally estimated by the empirical cdf of pseudo-observations \tilde{Y}_k of Y_k defined by $\tilde{Y}_k = \hat{a}_n^{-b_k} X_k$, then we have

$$\hat{F}_n(t) = \frac{1}{n} \sum_{k=1}^n \mathbb{1}_{\{\tilde{Y}_k \leq t\}}.$$

Some asymptotic results (1/3)

Assume that $\mathbb{E}[Z_1^2] < +\infty$, we have $\hat{a}_n = \exp(\hat{\beta}_n)$.

Strong Law of Large Numbers. SLLN for weighted sums of iid random variables (Cuzick, 1995; Bai et al. 2000): $\alpha_n(\hat{\beta}_n - \beta) \xrightarrow{a.s.} 0$ where $\alpha_n^2 = n^{-1} \sum_{k=1}^n b_k^2 - (n^{-1} \sum_{k=1}^n b_k)^2$. Since $(\alpha_n)_{n\geq 1}$ is non decreasing $\hat{\beta}_n \xrightarrow{a.s.} \beta$).

Law of Iterated Logarithm. LIL for weighted sums of iid random variables (Bai et al. 1997) leads to

$$\limsup_{n \to +\infty} \frac{\sqrt{n}\alpha_n^2}{b_n \sqrt{\log n}} |\hat{\beta}_n - \beta| \le 2\sqrt{2}\sigma \quad \text{a.s.}$$

where $\sigma^2 = \operatorname{var}(Z_1)$.

Some asymptotic results (2/3)

Central Limit Theorem. The CLT is obtained by combining the previous results with the Lindeberg-Feller theorem. If in addition to $\mathbb{E}[Z_1^2] < +\infty$ we have $\sqrt{n\alpha_n}/b_n \to +\infty$, then $\sqrt{n\alpha_n}(\hat{a}_n - a) \xrightarrow{d} \mathcal{N}(0, a^2\sigma^2)$, and

$$\hat{\sigma}_n^2 = \frac{1}{n-2} \sum_{k=1}^n \left(Z_k - \hat{\beta}_n b_k + \hat{\mu}_n \right)^2$$

is a consistent unbiased estimator of σ^2 .

Uniform Strong Consistency. Assume that Z_1 has a bounded df g, a bounded second order moment and that

$$\limsup_{n \to +\infty} \frac{b_n^2 \sqrt{\log n}}{\sqrt{n} \alpha_n^2} = 0,$$

then
$$\|\hat{F}_n - F\|_{\infty} \stackrel{a.s.}{\longrightarrow} 0$$

Laurent Bordes

Some asymptotic results (3/3)

Remarks.

- Conditions on $(b_n)_{n\geq 1}$ are satisfied whenever $b_n = (n-1)^{\alpha}$ or $b_n = (\log n)^{\alpha}$ with $\alpha > 0$.
- 3 If $b_n = (n-1)^{\alpha}$ the convergence rate in the CLT is $n^{\alpha+1/2}$. We retrieve the Lam et al. (2004) result.
- So The usual \sqrt{n} CLT convergence rate is obtained for $b_n = \log n$.

2 Semiparametric estimation

- 3 Aircraft data example
- 4 Applications to reliability

Aircraft data

Estimates of a for various b_n					
bn	$(n-1)^{0.788}$	log n	$\sqrt{n-1}$	n-1	$(n-1)^{3/2}$
â	0.900	0.620	0.740	0.952	0.992
95% CI for <i>a</i>	[0.798,1.003]	[0.275,0.966]	[0.489,0.991]	[0.901,1.003]	[0.982,1.001]

time

More general model

If $X_k = a^{g(k;\theta)} Y_k$ for $k \ge 1$ then we estimate μ , β and θ by minimizing

$$c(\mu,\beta,\theta) = \sum_{k=1}^{n} (Z_k - \beta g(k;\theta) - \mu)^2.$$

Parameters μ and β can be expressed as functions of $\theta,$ indeed:

$$\mu_{n}(\theta) = \frac{\left(\sum_{k=1}^{n} g(k;\theta)\right) \left(\sum_{k=1}^{n} y_{k}g(k;\theta)\right) - \left(\sum_{k=1}^{n} y_{k}\right) \left(\sum_{k=1}^{n} g^{2}(k;\theta)\right)}{\left(\sum_{k=1}^{n} g(k;\theta)\right)^{2} - n\left(\sum_{k=1}^{n} g^{2}(k;\theta)\right)},$$

$$\beta_{n}(\theta) = \frac{\left(\sum_{k=1}^{n} g(k;\theta)\right) \left(\sum_{k=1}^{n} y_{k}\right) - n\left(\sum_{k=1}^{n} y_{k}g(k;\theta)\right)}{\left(\sum_{k=1}^{n} g(k;\theta)\right)^{2} - n\left(\sum_{k=1}^{n} g^{2}(k;\theta)\right)},$$

hence $\hat{\theta}_n = \arg \min_{\theta} C_n(\theta)$ where

$$\mathcal{C}_n(\theta) = \sum_{k=1}^n (Z_k - \beta_n(\theta)g(k;\theta) - \mu_n(\theta))^2.$$

More general model for aircraft data

We minimize $\theta \mapsto C_n(\theta)$ for $b_n = (n-1)^{\theta}$.

Results: we obtain $b_n = (n-1)^{0.788}$ and we do not reject $H_0: a = 1$ at the 5% significance level.

Laurent Bordes

Extended Geometric Process

2 Semiparametric estimation

3 Aircraft data example

Mean number of failures on [0, t]: n(t)

Approximating n(t): For c > 0 and $t \ge 0$ define $\tau^c = \inf\{n \ge 1; X_n < c\}$ and $n^c(t) = \mathbb{E}\left[\sum_{n=1}^{\tau^c-1} \mathbb{1}_{\{T_n \le t\}}\right]$ then $n^c(t) \le n(t) = \mathbb{E}[N(t)]$. By the monotone convergence theorem $n^c(t) \to n(t)$. We set $u_n^c(t) = \mathbb{P}(T_n \le t, X_1 \ge c, \dots, X_n \ge c)$ and we have

$$n^{c}(t) = \sum_{n=1}^{\lfloor t/c
floor} u_{n}^{c}(t).$$

 $(u_n^c(t))_{n\geq 1}$ may be computed recursively using

$$u_1^c(t) = (F(t) - F(c))^+,$$

$$u_{n+1}^c(t) = \frac{1}{a^{b_{n+1}}} \int_0^{(t-c)^+} u_n^c(u) f\left(\frac{t-u}{a^{b_{n+1}}}\right) du.$$

Numerical example

Assumptions: a = 0.8, $Y_1 \sim \Gamma(2.5, 1)$, $b_n = (\log n)^{0.7}$.

A replacement policy

Assumptions: a < 1, $X_i < s \Rightarrow$ replacement (instantaneous) at some cost c_R , at failure time replacement (instantaneous) at cost c_F . We call C(s) the asymptotic unitary cost per unit time.

• Setting C([0, t]) the cumulated cost on [0, t] we have:

$$\mathcal{C}(s) = \lim_{t o +\infty} rac{\mathcal{C}([0, t])}{t}$$
 a.s.

We have

$$C(s) = \frac{c_R + c_F \mathbb{E}[\tau^s - 1]}{\mathbb{E}[T_{\tau^s}]},$$

with

$$\mathbb{E}[\tau^s - 1] = \sum_{k=1}^{+\infty} v_k^s \quad \text{and} \quad \mathbb{E}[\mathcal{T}_{\tau^s}] = \mathbb{E}[Y_1] \left(1 + \sum_{k=1}^{+\infty} a^{b_{k+1}} v_k^s \right)$$

and
$$v_k^s = \prod_{i=1}^k ar{F}(s/a^{b_i})$$
 with $ar{F} = 1 - F$.

Numerical example

Assumptions: a = 0.8, $Y_1 \sim \Gamma(2.5, 1)$, $b_n = (\log n)^{0.7}$, $c_R = 1$ and $c_F = 0.5$.

The cost function reaches its minimum at $s^{opt} = \arg \min_{s>0} C(s) \approx 1.70$.

Concluding remarks

- Extension of the classical Geometric Process \Rightarrow allows easy interpretation.
- New statistical results but some important questions \Rightarrow
 - weak convergence result for (\hat{a}_n, \hat{F}_n) (or convergence results $(\hat{a}_n, \hat{\theta}_n, \hat{F}_n)$);
 - easy to introduce covariates in a;
 - formal test to choose between several sequences $(b_n)_{n\geq 1}$.
- Reliability \Rightarrow
 - alternative replacement policy could be more appropriate;
 - find an upper bound for the the pseudo-renewal function.